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A theory for the simultaneous least-squares refinement of protein phases and heavy-atom parameters is 
presented. Weights are utilized which include experimental error in the heavy-atom structure amplitude 
as well as in the protein structure amplitude. Direct refinement of the cosine and sine functions of the phase, 
ct, automatically furnishes the best phase thereby avoiding the calculation of the best phase via the Blow- 
Crick probability frequency function postulated for phase error. The refinement of protein phases is 
constrained such that cos 2 or+sin 2 e--1 for all protein phases. A minimum-variance Fourier synthesis 
analogous to the best Fourier synthesis is formulated which has as weights a figure of merit not only based 
upon phase error as calculated by the new method but also including experimental error in the protein 
structure amplitude. Approximations show that correlations between protein phases and heavy-atom 
parameters can be neglected provided the ratio of heavy-atom parameters to protein phases is sufficiently 
small. Comparison of the new refinement with a conventional refinement utilizing two heavy-atom 
derivatives measured to 3 A resolution shows that the new refinement gives better closure and a stronger 
heavy-atom signal. Comparison of electron density maps shows that the minimum-variance Fourier 
synthesis yields an electron density map of improved resolution with respect to the conventional best 
Fourier synthesis. 

Introduction 
The number of proteins whose structures have been 
determined by X-ray methods is rapidly increasing 
every year. In almost every case the structure deter- 
mination has been achieved by the isomorphous re- 
placement method. The objective of this method is to 
obtain a set of protein phases which together with the 
protein structure amplitudes enables calculation of an 
electron density map. The protein phases are derived 
from a mathematical analysis of differences between 
the native-protein structure amplitudes and the heavy- 
atom derivative structure amplitudes (Harker, 1956). 
The heavy-atom derivative is prepared in such a way as 
to be isomorphous to the native-protein structure 
(Green, Ingram & Perutz, 1954). For a variety of 
chemical and physical reasons the intensity differences 
between the heavy-atom derivative and native-protein 
structure are generally small. In large protein structures 
and especially at higher resolution, the magnitude of 
this difference is generally no greater than several 
standard deviations. Clearly for an accurately deter- 
mined structure the protein must be properly refined. 

The basis for protein phase refinement originates 
from the method of treatment of errors first introduced 
by Blow & Crick (1959) for the isomorphous replace- 
ment technique and applied to refinement of protein 
phases and electron density calculation by Dickerson, 
Kendrew & Strandberg (1961). Several years later 
North (1965) and Matthews (1966a) included anomalous 
scattering measurements in the refinement of protein 
phases and electron density calculation. 

The usual method of refinement is iterative and 
consists of alternate cycles of protein phasing and 
least-squares refinement of heavy-atom parameters. 
For the heavy-atom parameters, the heavy-atom 
structure-amplitude differences between observed and 
calculated structure amplitudes called the lack of 
closure are minimized directly whereas for protein 
phases a distinction is made, the lack of closure is 
assumed to follow a Gaussian function whose distribu- 
tion determines the protein phase (Blow & Crick, 
1959). The root-mean-square (r.m.s.)lack of closure not 
only serves to define the standard deviation of the 
Gaussian distribution (Blow & Crick, 1959) but also 
can be employed for the calculation of weights in the 
heavy-atom refinement (Lipscomb et al., 1966; Adams 
et al., 1969). The r.m.s, lack of closure is recalculated 
after each cycle of refinement. Although this procedure 
of weighting in heavy-atom refinement has been 
successful, it has been shown in e-chymotrypsin to lead 
to slow convergence and to bias towards the starting 
heavy-atom parameters (Blow & Matthews, 1973). This 
bias and slow convergence could be reduced upon 
introduction of a weighting scheme wherein weights 
were assigned to each structure amplitude according 
to the corresponding figure of merit. Individual weights 
in heavy-atom refinement which are based upon 
counting statistics have been used also by Reeke, 
Becker & Quiocho (1971) and Ten Eyck & Arnone 
(1976). 

The interpretability of the electron density map 
depends upon the quality of the protein phases from 
which the map has been computed. The quality of the 
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protein phase is assessed by the figure of merit 
(Dickerson, Kendrew & Strandberg, 1961) computed 
for each protein phase which is then used as a weighting 
factor in the Fourier synthesis. Dickerson, Weinzierl & 
Palmer (1968) have pointed out that the figure of merit 
of a particular phase is stro/ngly dependent upon the 
dispersion of the probabilit3, distribution rather than 
upon its mean value. The figure of merit in effect is a 
measure of the precision of a phase, not of its accuracy. 
The dispersion which is recalculated from the residual 
errors of the individual reflexions after each cycle of 
refinement can also potentially suffer from the same 
sort of bias as do the heavy-atom parameters since the 
protein phase is conditional upon the heavy-atom 
parameters. More recently, Ten Eyck & Arnone (1976) 
have devised a procedure which would improve the 
correlation between the figure of merit and the accuracy 
of the data used to phase a particular reflexion. The 
procedure would remove the experimental errors from 
the heavy-atom errors in the dispersion term of the 
probability distribution function. An undesirable 
consequence of this procedure in some instances could 
be to make the phasing procedure even more sensitive 
to bias in the heavy-atom parameters. However, they 
showed that this procedure gave somewhat improved 
results with weak data (including anomalous disper- 
sion data) but made little difference to the treatment of 
isomorphous differences. 

In this article we wish to present a formalism for the 
simultaneous least-squares refinement of both heavy- 
atom parameters and protein phases. This formalism 
takes into account the experimental error and can 
include the implicit correlation existing among protein 
phases and heavy-atom parameters. It is free of bias 
since all weights are based only upon experimental 
error and these weights are used for both the heavy- 
atom parameters and protein phase refinement. The 
weights allow for both error in the native structure 
amplitudes and error in the heavy-atom structure 
amplitudes. The formalism does not require a prob- 
ability distribution to determine the protein phase 
since it directly yields the expected values of the cosine 
and sine functions of the phase which are required for 
electron density calculation. A figure of merit is derived 
for Fourier synthesis which takes into account not only 
the phase error but also the native-protein structure- 
amplitude error. 

Theory 
(a) Refinement 

The least-squares sum that is minimized in order 
that protein phases and heavy-atom parameters be 
refined is shown in the following equation. 

S= y' COHi(lFpHl°--lFpHlci) 2-t-O~'Hi(/l°PHi- dcPHi)2 (1) 
H,i 

where subscripts H and i denote a particular reflexion 
and derivative respectively, with subscript PH being 
used to distinguish between heavy-atom derivative 

structure amplitude IFpHli and native structure am- 
plitude Iful, o~m and C0Hi represent appropriate 
weighting factors and [FpH] ° and A°Pni are the exper- 
imental observations representing isomorphous re- 
placement and anomalous scattering measurements. 
Their observational equations are defined below. 

[Fpnl~=qi[(lf HI COS CtH + ani) 2 -Jr- (IFHI sin ~-u + bHi) 2] 1/2 

(Blow & Crick, 1959) (2) 

ACeni = 2qi(lFnl6i/lFpnlClfHli) (bHi COS O~n--ani sin C~H) 
(Matthews, 1966a), (3) 

where qg represents a scaling factor, an the protein 
phase, fm the heavy-atom structure factor having real 
and imaginary components aHi and b m respectively and 
gi=iklfHli, representing the ratio of the imaginary 
scattering component to the real scattering component 
of the heavy atom i. Equation (1) has been generalized 
to more than one type of anomalous scatterer by 
Matthews (1966b) but this will not affect the theory 
given below. 

In conventional least-squares analysis the weighting 
factors, toni and co~ i would simply be related to inverses 
of the variances of the observables, in this instance 
IFpnl ° and A°PHi . However, when the observational 
equations themselves are a function of an observable, 
in this case IFHI, Deming (1938) has shown that the 
weights in the least-squares sum S must be modified to 
take into account the random nature of the observable; 
then 

COHi= I 0 " 2 n i " l " ~  H) (4) 

and 

2 where april, ap2i and a 2 are the experimental variances 
associated with the observables [Fp~] °, A°em and IfHI 
respectively. 

(b) Electron density 
A striking similarity exists between equations (2) 

and (3) and the calculated electron density shown 
below: 

2 
eft) = V ~ Ifnl (cos ~H cos H . r - s i n  IX H sin H.r) ,  (6) 

where Q(r) represents the electron and r is a position 
vector. In both sets of equations, the protein phase an 
is present only in terms of the trigonometric functions, 
cos C~H and sin C~H. There is considerable advantage in 
the direct determination of the expected values of 
cos eH and sin c~n by least squares over the more con- 
ventional approach where determination of the phase 
eH is involved. By determining from least squares the 
expected values of cos eH and sin ell, the best phase 
required for Fourier synthesis is automatically com- 
puted and no longer must be calculated via the 
Gaussian frequency function postulated by Blow & 

AC 33A- 11 * 
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Crick. Simultaneously the figure of merit, which 
previously had been found to be sensitive to the shape 
of this frequency function, as a result of the least- 
squares approach no longer depends upon knowledge 
of the phase error distribution. Furthermore, where 
before the figure of merit was calculated assuming a 
constant phase error for an entire class of reflexions, 
least-squares refinement does not require any such 
postulate. 

It is quite conceivable, especially in the initial stages 
of protein-phase and heavy-atom refinement, that 
there is systematic error present in the observables 
which cannot be accounted for by the observational 
equations. An outcome of this problem can be that the 
sum of the squares of the expected values of the cosine 
and sine of the phase exceeds one. To avoid this 
problem, a constraint represented by the following 
equation 

cos 2 o~/+ sin 2 o~/t = 1 (7) 

is imposed upon each protein phase during refnement. 
The consequence of this constraint however is to 
eliminate any information about the dispersion of the 
phase errors which otherwise would have been ex- 
pressed by the figure of merit. Since the best electron 
density depends critically upon these weights, i.e. 
figures of merit assigned from a knowledge of the 
phase errors (Dickerson, Kendrew & Strandberg, 
1961), this loss of information is crucial and must be 
compensated for. By assigning a weight an to each 
term in the Fourier series such that the mean square 
error of the calculated electron density is a minimum, 
not only will the calculated Fourier synthesis have 
the proper functional form, but it also will be analogous 
to the best Fourier synthesis as originally derived by 
Blow & Crick. Their derivation for the best Fourier 
synthesis, as previously noted, requires that a prob- 
ability distribution be postulated for the phase errors, 
whereas the analogous best or minimum-variance 
Fourier synthesis discussed above will be shown to be 
simply related to the errors of the least-squares refine- 
ment and of the experimental data. 

Mathematically the minimization can be expressed 
as  

u=<fv[or(r)-oc(r)]2dv ) minimum, (8) 

where 0r(r) is defined in (6) and 

2 
Q~(r) = ~ ~ aHIFnI(COS~H COS H.r - - s in  aH sin H.r).  (9) 

Assuming that the phase 0~H and structure amplitude 
lEvi are independent random variables, minimization 
of U yields the following functional form for the weight, 
an, after some lengthy manipulations: 

1 
an--  [1 +(O-H/IFHI)2](1 .q_o-2), (10) 

where 

0 .2 = o-2(COS 0~U) + o-2(sin 0~/~) (11) 

-~o-2(cos ~n)/(sin o~/./)2=o-2(sin 0~H)/(COS 0~S) 2 (12) 

with O-2(COS 0~H) and o-2(sin 0~n) being the variances of 
cos 0~n and sin an respectively. It should be noted that 
this new figure of merit is more general than the 
original figure of merit since it also takes into account 
the experimental errors in protein structure amplitudes. 
If the majority of the protein structure amplitudes are 
measured with a precision considerably greater than 
their standard deviation, the new figure of merit will 
not be significantly influenced by the experimental 
measurements. 

(c) Approximations 
The theory, as it has been presented to this point, 

cannot be readily implemented without some com- 
putational approximations. Full-matrix refinement 
which utilizes the entire normal-equation matrix be- 
comes quickly prohibitive because of the large com- 
puter storage capacity necessitated by the normal- 
equation matrix. The increase in storage requirement 
is quadratic in the dimension of the normal-equation 
matrix where the dimension is equal to the sum of the 
number of refinable protein phases plus heavy-atom 
parameters. Detailed consideration of the normal- 
equation matrix however shows that off-diagonal 
elements which couple heavy-atom parameters and 
protein phases need not be stored and can be safely 
neglected provided the ratio of heavy-atom param- 
eters to the number of protein phases is sufficiently 
small (see Appendix). The full matrix then breaks down 
into block-diagonal form in the heavy-atom param- 
eters and diagonal form in the protein phases. This 
matrix is then readily handled on any reasonable-size 
computing machine. As discussed in the Appendix the 
diagonal elements of the inverted normal-equation 
matrix pertaining to the protein phases may be under- 
estimated, especially if the ratio of number of the heavy- 
atom parameters to the protein phases is not suffi- 
ciently small. To compensate for the diminished 
diagonal terms and consequently smaller variance o-2, 
a different refinement procedure can be employed. 
Only one of the trigonometric functions of the phase is 
refined and the other function is treated as a dependent 
variable. Then the first-order Taylor expansion of the 
functional relationship between the dependent and 
independent variables will tend to overestimate the 
variance of the dependent variable (Papoulis, 1965). 
Although this sort of compensation is not rigorous, 
it should be noted that where the phase has a high 
standard deviation, i.e. small diagonal element and 
thereby greatest sensitivity to the ratio of heavy-atom 
parameter to protein phases, the formula for the 
variance o -2 (equation 12) will overestimate by the 
largest amount. Whereas for small values of o .2 , i.e. 
large diagonal elements and least sensitivity to this 
ratio, the formula becomes exact. 
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Results 

The new least-squares refinement was tested on data 
measured to 3 A resolution for two heavy-atom deriva- 
tives of glycogen phosphorylase a. To assess the 
performance of the new refinement objectively, it was 
compared to a conventional refinement procedure set 
forth in a paper by Adams et al. (1969). A computer 
program initially written by M. Rossmann and others 
and based upon the above paper was rewritten to take 
into account the details of the new least-squares refine- 
ment. The unmodified program was employed as 
representative of the conventional refinement. This 
program has been used to solve numerous protein 
structures, lactate dehydrogenase (Adams et al., 1969), 
yeast hexokinase (Fletterick, Bates, Steitz, 1975), serine 
proteaseSGPB(Delbaere, Hutcheon,James&Thiessen, 
1975) and others. Since the new refinement requires 
weights based upon the errors in the measured data, 
every effort was made to allow for all possible sources 
of error to contribute to the weights. It should be noted 
that after data reduction, the weights were employed 
unaltered throughout subsequent calculations. Briefly, 
the sources of error which were considered and taken 
into account were counting statistics, short-term 
fluctuations (Sygusch, 1976), absorption errors, crystal 
decomposition errors, as well as intercrystal scaling 
e r r o r s .  

Some general features have emerged from a com- 
parison of the behavior of the two types of refinements. 
Convergence by the new least-squares approach was 
found to be more rapid; the new refinement converged 
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Fig. 1. Signal-to-noise ratios of two heavy-atom derivatives of 
glycogen phosphorylase a plotted as a function of resolution. 
NEW denotes results based upon the new refinement and CONV 
refers to results obtained from a conventional refinement. See text 
for heavy-atom derivative abbreviations. 

after 5 cycles of refinement whereas the conventional 
refinement was stopped after 8 cycles when various 
statistical indicators discussed below exhibited stability. 

Since the cosine and/or sine of the phase now is a 
refinable parameter, the evaluation of the phase at 
regular intervals* around the phasing circle can be 
eliminated, thereby resulting in a potentially substantial 
saving of computational time. Reflexions whose minima 
were judged to be too shallow and thus not suitable 
for refinement (i.e. low figure of merit) were however 
examined at regular intervals about the phasing circle 
at each cycle of refinement to determine whether the 
minimum had shifted. And lastly, the new refinement 
does not require any special precautions to be taken 
for variables which are highly correlated among 
themselves; all variables can be refined simultaneously, 
including occupancy and thermal motion. 

The depth of the least-squares minima obtained for 
the two refinements as expressed by the statistical 
quantity, the goodness of fit, are very different, 9.92 for 
the new refinement and 0-41 for the conventional re- 
finement. The goodness of fit is defined by the quantity 
S / n - p  where S is the value of the least-squares sum S 
of equation (1), n represents the total number of unique 
heavy-atom measurements and p the dimension of the 
normal-equation matrix. This quantity can be shown 
from statistical considerations for the proper set of 
weights to be equal to one (Hamilton, 1964). Whenever 
this quantity exceeds one, systematic error may be 
present in the data. In the case of conventional refine- 
ment where the value for the goodness of fit is sub- 
stantially less than one, 0.41, either there exists a 
scaling factor error in the weights employed (Hamilton, 
1964) or there is significant systematic error in the 
weights themselves. Since it is not possible to 
distinguish between either of these two possibilities, 
it is believed that a more meaningful comparison can 
be obtained between the two refinements if only 
unweighted statistical quantities are considered. 

In Fig. 1 the signal-to-noise ratios are presented for 
the last cycle of each refinement for the two derivatives, 
lead nitrate (PB) and ethyl mercury thiosalycilate 
(EMTS). It is evident that in both cases the new least- 
squares refinement gives a much better signal-to-noise 
ratio than does the conventional refinement, especially 
for EMTS in the high-angle region. A breakdown of 
the signal and noise into various ratios comparing the 
new refinement with respect to the conventional refine- 
ment is presented in Fig. 2. In each case the new refine- 
ment results are superior to the conventional refine- 
ment. The r.m.s. If~l ratio is always greater than one 
and the r.m.s, closure (E) ratio is virtually always less 
than one for both derivatives. The signal-to-noise ratio 
has improved in the new refinement with respect to 
the conventional refinement but not at the expense of 

* The interval chosen for the evaluation of the phase about the 
phasing circle was 18 °. This number was chosen as a compromise 
between reasonable computing time and cost. There are some 20 000 
unique reflexions to 3 A resolution in glycogen phosphorylase a. 
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simultaneously increasing or decreasing both r.m.s. 
[fn[ and r.m.s, closure. In Table 1 are summarized  some 
addi t ional  statistical quanti t ies and final parameters  
for the final cycle of each refinement. RMOD, the overall 
signal-to-noise ratio summarizes  the results of Fig. 1; 
the new refinement is substantial ly better. This is 
further supported by the fact that RMOD, CEN is indeed 
lower for the new refinement than for the convent ional  
refinement. The anomalous-dispers ion parameters,  
6pb and 6EMTS, which are both refinable, are both larger 
in the new refinement than in the convent ional  refine- 
ment, the ideal value being for both 0" 12 approximately.  
This again points out that the heavy-atom signal is 
much  better resolved in the new refinement. 

A notable  exception in Table 1 is the average figure 
of merit  ~ which is substantial ly smaller for the new 
refinement (~,=0"58)  than it is for the convent ional  
refinement ( ~ ,  Jr = 0"67). The figures of merit  as a func- 
tion of resolution for the two refinements are shown in 
Fig. 3. It is evident from Fig. 3 that the figures of merit  
from the two respective refinements cannot  be solely 
related through some suitable scaling factor owing to 
the more  rapid decrease with increasing resolution of 
the new figure of merit  when compared to the conven- 
t ional figure of merit. It is noteworthy that if the figure 
of merit  (N~,.) is calculated via the convent ional  refine- 
ment  from parameters  and phases obtained from the 
new refinement, this figure of merit  is substantial ly 
higher on the initial cycle but  after cycles of conven- 
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Fig. 2. Comparison as a function of resolution of identical quantities 
obtained from the new refinement and a conventional refinement. 
The continuous line represents the ratio of heavy-atom signals 
obtained from the new refinement with respect to the conven- 
tional refinement for two heavy-atom derivatives of glycogen 
phosphorylase a. Similarly, the broken line represents ratios of 
lack of closure for the two refinements and heavy-atom derivatives. 
See text for heavy-atom derivative abbreviations. 

Table  1. Refinement summary 
Refinement 

Statistics New Conventional 
RMOD* 0"304 0"406 
RMOD, CENt 0"659 0"719 
6pb ~ 0"064 0"051 
6EMTS* 0"063 0"040 

0"58 0"67 

~i[(IFp.l?-IFp.17)[ 
* RMO D =  ,lf.I 
t Summation H is over centric zones only 

Defined via equation (3) 
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Fig. 3. Comparison as a function of resolution of various figures of 
merit obtained from the new refinement and a conventional 
refinement. The curves designated by average figures of merit 
m,, me, s and ~c,, represent calculations based upon the new refine- 
ment, the conventional refinement and the initial cycle of a con- 
ventional refinement using parameters and phases from the final 
cycle of the new refinement. 

t ional refinement tends to the figure of merit  obtained 
from the final cycle of the true conventional  refinement. 

In Fig. 4 there is shown a 10 A thick electron density 
section of glycogen phosphorylase  a computed with 
phases and figure of merits obtained respectively from 
the two refinements. The contour  levels have been 
chosen so that average value of the product  of the figure 
of merit  and the protein structure ampl i tude is identical 
for both maps. The new m a p  (b) appears to be signif- 
icantly sharper in resolution of the protein backbone  
than  is the convent ional  map  (a) even when the average 
figure of merit  has been computed to be smaller  in the 
new map  (e.g. compare  circled cross section of an 
a-helix on both maps). With  the exception of a few 
cases (approximately 59/0), whenever the protein back- 
bone chain was traced through low density on the new 
electron density map  the protein backbone  chain went 
through even weaker or even non-existent electron 
density on the convent ional  map. It should be noted 
that if the lowest contour  level were el iminated from 
both maps  in Fig. 4 the new map  would be considerably 
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improved in presentation and still be completely inter- 
pretable whereas the conventional map would de- 
finitely deteriorate in interpretability. 

Summary 

A comprehensive theory of least-squares refinement 
of heavy-atom parameters and protein phases has been 
presented. The theory does not make any distinction 
between the manner of refining heavy-atom param- 
eters and protein phases. The least-squares refinement 
allows input into the weighting factors for the observa- 
tional equations representing isomorphous replace- 
ment and anomalous scattering, experimental error 
in the heavy-atom derivative structure amplitudes 
as well as in the protein structure amplitudes. By 
refining the cosine and sine values of the phase, no 
probability functions are required for the evaluation 
of the best phase. Although least-squares refinement 
allows independent refinement of the cosine and sine 
functions of the phase, experience has shown that 
refinement should be conducted such that the constraint 
of COS 2 O~ H -'[- sin 2 an---- 1, where 0~n is the protein phase, 
is satisfied in all reflexions. 

This phase constraint effectively sets the figure of 
merit equal to one for all reflexions, thereby neces- 
sitating the derivation of a new minimum-variance 
Fourier synthesis analogous to the best Fourier 
synthesis of Blow & Crick. The new refinement ob- 
tained is not only a function of the phase errors deter- 
mined by the least-squares refinement but also a func- 
tion of the measurement errors in the protein structure 
amplitudes. 

The refinement of the protein phases and heavy- 
atom parameters can be simplified computationally 
provided the ratio of the total number of refinable 
heavy-atom parameters to protein phases is suffi- 
ciently small. Difficulties in refinement can occur if this 
ratio is not small enough. 

Comparison of the new refinement and of a conven- 
tional refinement for a two-derivative case shows that 
the new refinement gives better closure and improved 
heavy-atom signals. The minimum-variance Fourier 
synthesis computed from phases obtained from the new 
refinement was of higher resolution than the best 
one computed from the conventional refinement. 

The author wishes to thank Dr R. J. Fletterick for 
his support and many fruitful discussions, Dr N. B. 
Madsen for his enthusiastic interest and Dr M. N. G. 
James for initially pointing out this problem area. The 
author also wishes to thank the Medical Research 
Council of Canada for a Post-Doctoral Fellowship 
and the Protein Structure and Function Group at the 
University of Alberta for generous computing funds. 

APPENDIX 
In least-squares refinement the parameter shifts and 
errors are dependent upon the inverted normal- 

equation matrix. Inversion of the normal-equation 
matrix in unreduced form is not possible for computa- 
tional reasons. In the following a reduction of the nor- 
mal-equation matrix will be presented which is 
adequate for most protein refinements. 

The unreduced normal-equation matrix is of the 
following form: 

The matrix A is a square-matrix block-diagonal form 
constructed from the heavy-atom parameter derivatives. 
A typical element aij of A* is 

c~(IFenl OIFen,[ ~vn, Pn', (2) 
aij =n,~, ~ OPi c~P~ 

where Pi represents a heavy-atom parameter and 
6pn, pn, is one if the product pertains to the same 
derivative and reflexion. It is zero otherwise. The 
matrix B is a rectangular matrix representing the 
interaction of the heavy-atom parameters and the 
protein phases. A typical element bi, n is 

c~lFpHl ~lF~,nl (3) 
bi.n = aPi a cos an" 

The matrix C is diagonal with elements, 

~?lFenl c~lFpw] 
o~n f e n  en'. (4) CH,H' ~--- E 6 ~ cOS ~H ~ c O S  , ' H,H" 

The inverted normal equation matrix can be written 
in the same form as (1).t 

Of primary interest are the weights an required for 
electron-density synthesis which are dependent upon 
a~-. The variance a~-, where a2r= a2(cos c~n)+ a2(sin an), 
is obtained from the diagonal elements of the inverted 
normal-equation matrix. Consequently the matrix F 
is of most immediate interest. 

Then 
F = (I - C -  1BrA - 1B)- 1 C-  1 (6) 

where I is the identity matrix. The dimension of the 
square phase-error matrix F is equal to the number of 
refinable phases. Thus the inversion of the coefficient 
matrix ( I - C - 1 B r A - 1 B )  -1 is the limiting step. If 
however it were possible to show that the term 
C - I B r A  - ~B were small or negligible compared to I, 
the inversion of the coefficient matrix would be 
considerably simplified. The arguments to be presented 
below are by no means rigorous but are merely intended 
to convey order-of-magnitude considerations. 

* Anomalous scattering will not be considered since for most 
instances the anomalous signal is one order of magnitude less than 
the isomorphous signal and thus will not affect the preceding 
analysis, as shown below. 

5" All equations referred to in this Appendix are equations in the 
Appendix and not in the main paper. 
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Consider first a term of BrA - IB: 

OIFpHI OlFpnl (BTA - 1B)H,H, 
= ~  0 cos c~n 0Pi 

-x01FeH[ OlFewl (7) 
x ajk OPk 0 COS en' 

_ O,FpH, ( j~  OlFen, 
t? COS ~n t?Pj 

~lFen'l~ ~lFm'l (8) 
x a jr jkak ~ j  a COS ~ , '  

where rjk represents an element of the heavy-atom 
correlation matrix and aj is defined by 

a~k 1 = a jr jkak. (9) 

Provided the correlations among heavy-atom param- 
eters are not unduly severe 

1 
aj ~- [Z(OiVpnl/Opj)2],/2. (10) 

n 

The derivatives of a given heavy-atom parameter 
generally do not vary among themselves by more than 
one order of magnitude. Then 

OIf Pnl OPj tTJ"~n~I1/2' (11) 

where nn represents the number of observations per 
heavy-atom compound. Equation (7) then reduces to 

(BTA_IB)H,n ,~  - 1 OlFpHI (2r jk)  OlFpH.I (12) 
nH 0 COS C~n j, k (~ COS (X H, 

In general, 
2 rjk ~- 2 krlpH' (13) 

PH 
where npn is the number of refinable parameters per 
heavy-atom compound and k is a constant known 
from experience to vary between two and four. If the 
entire second portion of the coefficient matrix is 
considered: 

1 
(C-  ~ B TA-  ' B)~, H' --~ ~ (OIFpul/8 cos ~H) 2 

H 

OIFpHI OIFpH,I pn2 knen 
x c3 cos C~H ~3 cos O~n" nn (14) 

and if the same sort of considerations are applied as for 
equations (10) and (11) 

(C - 1BT A - 1B)H ' H' ~'~ knell/nil (15) 

where fzen is the average number of heavy-atom param- 
eters for the heavy-atom compounds. 

Thus as the number of observations increases the 
term represented by equation (15) steadily becomes 
less important. For most proteins this term differs by 
at least two orders of magnitude from unity. For large 
proteins and few heavy-atom sites this term may differ 

by at least three orders of magnitude from unity. 
However, the converse of this result is that for small 
proteins and many sites, this term may not differ by 
more than one order of magnitude from unity and thus 
need not be negligible. The binomial expansion of F to 
first order is 

F = ( I +  C-  1BTA- 'B)C-  ~ (16) 

The general effect of taking into account heavy-atom 
and protein-phase coupling is to increase the diagonal 
elements of the phase-error matrix F with respect to 
the inverted diagonal matrix C-1 

It should be noted that convergence problems can 
arise especially in cases where refinement based upon 
low-resolution data is concerned. In these cases the 
kflpH/rlVH ratio may not be small enough and if the 
off-diagonal elements are neglected, the magnitudes of 
the calculated parameter shifts for both heavy-atom 
parameters and protein phases may be inaccurate and 
slow down convergence. In severe cases the signs of 
the parameter shifts may be wrong and the refinement 
may even diverge. 
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